Social Sharing
Extended Viewer
Machine Learning Factors: Capturing Non Linearities in Linear Factor Models
Mar 26, 2021
The linear factor model has been a workhorse for understanding portfolio exposures, risk and performance for many years. But the idea that relationships between factor exposures and returns must be linear is not etched in stone. We investigate the extent to which machine-learning (ML) algorithms can detect significant nonlinearities and interactions in these relationships after the linear components have been removed.
We shine a light inside the “black box” to gain insight into the relationships the ML algorithms identified. For example, we found that interactions between style factors had a significant influence on the ML models’ output, particularly those factors that showed strong feature importance, including the interaction between momentum and size, as shown below.
Momentum-Size Interaction
We defined bi-variate interaction as the ML model’s predicted response minus the univariate partial dependence contributions from each of the two inputs, which is plotted in the contours.
Download Report
Research authors
- Jun Wang, Vice President, MSCI Research
- Howard Zhang, Howard Zhang was a vice president at MSCI
- George Bonne
Related Content
The Many Faces of Sentiment
There are many dimensions of sentiment — some are based on the actions or views of influential and potentially well-informed market participants, such as short sellers, options traders, sell-side analysts, institutional investors and corporate insiders.
Read the PaperHow Did Sentiment Factors Perform in Different Regions?
Sentiment factors attempt to measure various groups’ views on a company.
Read MoreThe Hunt for Pandemic-Related Investment Factors
We explore the hunt for pandemic-related factors that have affected markets and portfolios. How did AI help George Bonne and team spot them and quantify their impact?
Learn More